Efficient selective synthesis of 2-substituted indoles from complex-base-promoted arynic cyclisations

C atherine K uehm-C aubère, ${ }^{\mathrm{a}}$ Ivan R odriguez, ${ }^{\mathrm{b}}$ B runo P feiffer, ${ }^{\text {a }}$ P ierre Renard ${ }^{\mathrm{a}}$ and P aul C aubère ${ }^{*, b}$

${ }^{\text {a }}$ A dir, 1, rue C arle H ébert, F-92415 C ourbevoie, F rance
${ }^{\text {b }}$ L aboratoire de Chimie O rganique 1, U RA CN RS 457, Faculté des Sciences, U niversité H. Poincaré N ancy-I, BP 239, F-54506 Vandoeuvre-les-N ancy, France

2-Substituted indoles have been efficiently obtained by selective arynic cyclisation of halogenated aryl imines of methyl ketones in the presence of the complex-base $\mathrm{NaNH}_{2}-\mathrm{Bu}^{\text {toN }}$ a and by $\mathrm{PhCH}_{2} \mathrm{SH}^{-\mathrm{AlCl}_{3}}$ opening of tetrahydrothiopyranoindoles also obtained from arynic cyclisation of imines.

As part of a programme dealing with medicinal chemistry we were interested in a selective, inexpensive and large-scale synthesis of 2 -substituted indoles. From the literature ${ }^{1}$ it appeared that the numerous available synthetic methods presented a number of drawbacks such as the use of hazardous starting materials or expensive reagents. A bout twenty years ago^{2} we explored for the first time the synthesis of indoles by arynic cyclisation of imines in the presence of the complexbase ${ }^{3} \mathrm{NaNH}_{2}-\mathrm{Bu}^{\text {to }} \mathrm{ON}$ a. Based upon easily available starting materials we have, more recently, exemplified the usefulness of this new access to indole derivatives. ${ }^{4} \mathrm{M}$ oreover the complexbase, which is essential to the generation of benzyne intermediates, may behandled on an industrial scale ${ }^{5}$ and avoids the use of liquid ammonia as a solvent.

These data, joined to our experience of the special properties of the complex-base aggregates, ${ }^{3,6}$ led us to conclude that our arynic cyclisation of imines could find some applications in the synthesis of 2 -substituted indoles. We report herein that, as expected, such compounds may be selectively prepared either directly through the arynic pathway or after a simple transformation of the products resulting from such a cyclisation.

Results and discussion

The first approach considered is reported in Scheme 1. We reasoned that the kinetic basicity of the complex-base could be fitted to the selective abstraction of the methyl hydrogens. M oreover the formation of appropriate three-component mixed aggregates between $\mathrm{NaNH}_{2}-\mathrm{Bu}^{t} \mathrm{ON}$ and the imine enolates should favour the arynic cyclisation while avoiding the equilibration of imine enolates. The experiments whose results are reported in Table 1 completely verified our expectations.

The reported data deserve some comment. Worthy of note is the selective kinetic enolisation of imines $\mathbf{3}$ leading, through the arynic enolate intermediate 4 , to only or the preponderant formation of 2 -alkylindoles 6 . Curiously, variations in the yields of isomers 7 , coming from the α^{\prime}-enolisation of imine intermediates 3, accompanied structural changes remote from the reaction centre of the imines (runs 6-9). Taking into account the properties of aggregates ${ }^{3,7}$ this behaviour can be ascribed to modifications in the interaction between intermediates 3 and the complex-base and/or to the structure of the three component aggregate intermediates. ${ }^{4}$

From a practical point of view it must be mentioned that imines $\mathbf{3}$ were used as crude products, thereby avoiding tedious purifications, and that taking account of the two-step reactions yields vary from fair to good.

As mentioned above, indole derivatives bearing an easily

transformed function on the C-2 position could also be of interest as starting materials for the synthesis of 2 -substituted indoles. Within this framework our investigations were continued by a study of the synthesis of compounds 6 starting from anilines 1 and pyruvic derivatives 2 . Systematic unreported experiments rather surprisingly showed that pyruvaldehyde dimethyl acetal ($2 ; R^{\prime}=R^{\prime \prime}=O M e$) was the most prone to lead to the corresponding imine $\mathbf{3}$ accompanied by only a few sideproducts. A crude representative of such imines compound $\mathbf{3}$ ($R^{\prime}=R^{\prime \prime}=\mathrm{MeO}$) submitted to our arynic cyclisation conditions led to the expected indoles in good to very good yields (Table 1, runs 14-18). The corresponding indolecarbaldehyde may be quantitatively obtained by simple hydrolysis as checked with the acetal of run 14. This efficient and easily performed synthesis of indole 2-carbaldehydes opens up a simple access to a large variety of 2 -substituted indole derivatives.

F inally, during our studies dealing with the demethylation of methoxyindoles in the presence of $\mathrm{AIX}_{3}-\mathrm{RSH}^{8}$ we accidentally found another, indirect access to a few 2 -substituted indoles. Thus in the presence of $\mathrm{AlCl}_{3}-\mathrm{PhCH}_{2} \mathrm{SH}$, the (methoxy)tetrahydrothiopyranoindole 8a, also obtained from arynic

Table 1

Run	Starting materials				Temp.	Time (t/h)	Compound obtained	E	Y ield (\%) ${ }^{\text {a }}$
	R	X	R^{\prime}	R"					
1	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$	$R T^{\text {e }}$	17	6a	H	40
2	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	CHMe 2	RT	40	6b (7b)	H	30 (1) ${ }^{\text {b }}$
3	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	RT	24	6c	M e	$36^{\text {c }}$
4	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CM}_{2}$	RT	22	6d	H	30
5	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$		2,6,6-M es -cyclohex-2-enyl-CH=	RT	24	6 e	M e	$30^{\text {c }}$
6	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NEt}_{2}$	RT	19	6 f (7f)	H	35 (7) ${ }^{\text {b }}$
7	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NBn} 2$	RT	46	6g (7g)	H	38 (18)
8	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NM} \mathrm{E}_{2}$	RT	21	6h (7h)	H	40 (4) ${ }^{\text {b }}$
9	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NBn} 2$	RT	48	6 i (7i)	H	27 (14)
10	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OEt}$	RT	48	6j (7j)	H	32 (5) ${ }^{\text {b }}$
11	4-M e	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$	RT	18	6k (7k)	H	31 (2) ${ }^{\text {b }}$
12	4-F	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$	RT	18	61 (7l)	H	$30(<1)^{\text {b }}$
13	6-M e	$3-\mathrm{Cl}$	H	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}$	$50^{\circ} \mathrm{C}$	48	6m (7m)	H	27 (7) ${ }^{\text {b }}$
14	$4-\mathrm{OM} \mathrm{e}$	$3-\mathrm{Cl}$	MeO	MeO	RT	48	6 n	H	$54{ }^{\text {d }}$
15	4-M e	$3-\mathrm{Cl}$	MeO	M eO	RT	48	60	H	55
16	4-F	$3-\mathrm{Cl}$	MeO	MeO	RT	16	6 p	H	50
17	$4-\mathrm{Cl}$	$3-\mathrm{Cl}$	MeO	M e0	RT	29	$6 q$	H	35
18	H	$3-\mathrm{Br}$	MeO	MeO	RT	44	6 r	H	35

${ }^{\text {a }}$ Isolated yield calculated for the two steps relative to the starting amine $\mathbf{1}$. ${ }^{\mathrm{b}}$ Identified only by spectroscopic data. ${ }^{\mathrm{c}} \mathrm{Y}$ ield in N -methylated derivative obtained by trapping intermediates 5 with $\mathrm{M} \mathrm{e}_{2} \mathrm{SO}_{4}$ (see text). ${ }^{\text {d }}$ Quantitatively transformed into aldehyde with HCl -acetone ${ }^{\mathrm{e}}$ Room temperature.

Table 2

$\mathrm{R} \frac{1}{4}$		$\xrightarrow[0^{\circ} \mathrm{C}]{\mathrm{PhCH}_{2} \mathrm{SH}} \mathrm{R}^{\prime}$			
Starting material		Time (t/h)	Compound obtained		
R	R^{\prime}			R"	Y ield (\%) ${ }^{\text {a }}$
8-M e0	H	1	9a	$5-\mathrm{OH}$	55
8-M e0	Me	3	9b	$5-\mathrm{OH}$	63
8-M eO	$\mathrm{CH}_{2} \mathrm{Ph}$	3	9c	$5-\mathrm{OH}$	80
8-M e0	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$	2.5	9d	$5-\mathrm{OH}$	70
6-M eO	H	2	9 e	7-OH	65

${ }^{\text {a }}$ I solated yield.
cyclisation, ${ }^{4}$ led to compound 9 a according to the reaction of Table 2.

F rom a systematic study not reported here we determined the best experimental procedure (see Experimental section), which was then applied to some representative substrates. The results obtained are reported in Table 2.
The yields obtained varied from good to excellent and the excess of thiol reagent was easily recovered. This opening of the thiopyran ring must be related to previously described reductions of aryl alkyl ethers and sulfides by $\mathrm{AlCl}_{3}-\mathrm{RSH}$ reagents. ${ }^{8,9}$ However, as far as the demethylation of aryl methyl ethers is concerned, the present results confirm the selectivity of $\mathrm{AlCl}_{3}-$ $\mathrm{PhCH}_{2} \mathrm{SH}^{8}$ compared with other analogous reagents, since no
reduction of the methoxy group was observed. This access to 2substituted indoles, although more restricted, nicely completes the syntheses described above

Conclusions

In the present work we have shown that arynic cyclisation of imines in the presence of a complex-base is very efficient in the direct or indirect synthesis of 2 -substituted indoles. Since we showed that imines obtained from aldehydes were also easily cyclised into 3 -substituted indoles ${ }^{4}$ it appears that these arynic reactions ought to find further applications in heterocyclic synthesis.

Experimental

G eneral methods

M ps were determined on a Tottoli melting point apparatus and are uncorrected. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, with a Bruker AM 400 or a Bruker 250 MHz spectrometer (A ttached Proton Test method, APT). ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} with the same apparatus. $\mathrm{Me}_{4} \mathrm{Si}$ was the internal standard. IR spectra of thin films between NaCl plates were recorded with a Perkin-Elmer 841 instrument. Elemental analyses were performed by CN R S laboratory (Vernaison) and by ENSCM M icroanalysis Department, M ontpellier. M ass spectra were recorded on a Hewlett Packard 5971 A instrument. TLC was performed with plates coated with K ieselgel G (M erck). The plates were developed with hexane-EtOAc. The silica gels used for column chromatography and flash chromatography were K ieselgels of $0.063-0.2 \mathrm{~mm}$ and $0.04-0.063 \mathrm{~mm}$ particle size, respectively.

M aterials

Sodium amide powder was obtained commercially (M erck). Reagent-grade tetrahydrofuran (THF) (BASF) was first distilled from potassium hydroxide and then from sodium benzophenone ketyl and stored over sodium until used 6 -(D imethylamino)hexan-2-one ${ }^{10}$ 5-ethoxypentan-2-one, ${ }^{11}$ 5-(dibenzylamino)pentan-2-one, ${ }^{12}$ and 6 -(dibenzylamino)hexan2 -one ${ }^{12}$ were prepared according to the literature methods. ${ }^{13}$ Other ketones $\mathbf{2}$ were commercially available.

G eneral procedure for the preparation of imines 3

Imines were prepared from an equimolar mixture of ketone and amine in refluxing benzene or toluene. The water formed was collected in a Dean-Stark apparatus. When necessary, the reaction was catalysed by p-TsOH. When the reaction was complete the mixture was left to cool to room temperature, dried over $\mathrm{M} \mathrm{gSO}_{4}$, and solvents were removed under vacuum. Crude imines were used without further purification.

G eneral procedure for arynic cyclisation of imines 3 into N -unsubstituted indoles

The reactions were performed with the complex-base $\mathrm{NaNH}_{2}-$ $\mathrm{Bu}^{\mathrm{t}} \mathrm{O} \mathrm{Na}$.
(a) P reparation of the complex-base. To a magnetically stirred suspension of 7 mol equiv. of NaNH_{2} in THF (7 ml for 70 mmol of NaNH_{2}) was added dropwise at room temperature 2 mol equiv. of $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$ under a nitrogen flush. A fter completion of the addition, the mixture was warmed at $45^{\circ} \mathrm{C}$ for 2 h .
(b) Condensation. To the amount of the complex-base calculated according to the amount of starting ketone (see Table 1) was added at $0^{\circ} \mathrm{C}$ the corresponding crude imine. The mixture was stirred at room temperature during the time indicated in Table 1. The reaction was monitored by gas chromatography (GC) (capillary HP1, 6 m). A fter completion the reaction mixture was hydrolysed at $0^{\circ} \mathrm{C}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed twice with water. A fter drying of the extract over $\mathrm{M} \mathrm{gSO}_{4}$ and removal of the solvent under vacuum, product 6 (and 7) was isolated by flash chromatography (K ieselgel $60-43 \mu$) with EtOA c-hexane as eluent of progressive polarity (from 50:50 to 100\% EtOA c for compounds f, g, h and i; from 10:90 to $30: 70$ for the others)

General procedure for arynic cyclisation of imine 3 into N -substituted indoles

The arynic condensation was performed as described above U pon completion, the reaction mixture was decanted under a stream of nitrogen. The supernatant liquid was then added to 3 mol equiv. of electrophile at $0^{\circ} \mathrm{C}$ and stirred at room temperature. A fter completion of the reaction and usual workup, the solvent was evaporated off under reduced pressure, and the indoles were purified by flash chromatography (K ieselgel $40-63 \mu$) with EtOA c-hexane as eluent of progressive polarity (from 5:95 to $30: 70$).

G eneral procedure for the preparation of indoles 9

1 M ol equiv. of a compound 8 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}$ for 3 mmol) was added dropwise at $0^{\circ} \mathrm{C}$ to a mixture of 1.5 mol equiv. of AICl_{3} and 20 mol equiv. of $\mathrm{PhCH}_{2} \mathrm{SH}$. A fter the reaction mixture had been stirred for 30 min at $0^{\circ} \mathrm{C}, 1.5 \mathrm{~mol}$ equiv. of AlCl_{3} and 20 mol equiv. of $\mathrm{PhCH}_{2} \mathrm{SH}$ were added. The reaction was monitored by GC (capillary HP1, 6 m) and stopped when the maximum amount of the desired product was reached. The reaction mixture was hydrolysed with 1 m HCl at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under vacuum. The product was isolated by flash chromatography (K ieselgel 40-63 μ) with EtOA c-hexane as eluent of progressive polarity (from $20: 80$ to $50: 50$).
2-B utyl-5-methoxy-1H -indole 6a. Mp $52^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3404$ (NH) ; $\delta_{\mathrm{H}} 7.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.18-6.74(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.16(\mathrm{~s}, 1$
H, ArH), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $2.72\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.94\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 153.95$ (arom CO), 140.90, 130.89 and 129.22 (arom C), 110.90, 110.57, 101.93 and 99.18 (arom CH), $55.84\left(\mathrm{CH}_{3} \mathrm{O}\right), 31.25$, 27.93 and $22.32\left(\mathrm{CH}_{2}\right)$ and $13.80\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 76.94 ; \mathrm{H}$, 8.18; $\mathrm{N}, 6.87 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 76.81 ; \mathrm{H}, 8.43 ; \mathrm{N}, 6.89 \%$); $\mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 204(\mathrm{M}+1)$.
2-I sobutyl-5-methoxy-1H -indole $\mathbf{6 b} . \quad \mathrm{Mp} \quad 40^{\circ} \mathrm{C} ; \quad v_{\text {max }} / \mathrm{cm}^{-1}$ 3404 (NH); $\delta_{\mathrm{H}} 7.73$ (s, $1 \mathrm{H}, \mathrm{NH}$), 7.18-6.75 (m, $3 \mathrm{H}, \mathrm{ArH}$), 6.16 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.59\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}$) and $0.97\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}} 153.88$ (arom CO), $139.81,130.88$ and 129.20 (arom C), 110.93, 110.55, 101.84 and $100.14(\operatorname{arom~CH}), 55.81\left(\mathrm{CH}_{3} \mathrm{O}\right), 37.66\left(\mathrm{CH}_{2}\right), 28.84(\mathrm{CH})$ and $22.41\left(2 \times \mathrm{CH}_{3}\right)$ (Found: C, 76.57; H, 8.32; N, 7.06\%); m/z (CI, CH_{4}) $204(\mathrm{M}+1)$.
3-I sopropyl-5-methoxy-2-methyl-1H-indole $\quad 7 \mathrm{~b} . \quad v_{\text {max }} / \mathrm{cm}^{-1}$ 3403 (NH); $\delta_{\mathrm{H}} 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$), 7.12-6.73 (m, 3 H, A rH), 3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $3.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and 1.39 (d, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); $\delta_{\mathrm{c}} 153.04$ (arom CO), 130.53, 130.42, 127.64 and 117.24 (arom C), 110.88, 109.61 and 102.10 (arom CH), $55.81\left(\mathrm{CH}_{3} \mathrm{O}\right), 25.66\left(2 \times \mathrm{CH}_{3}\right), 22.71(\mathrm{CH})$ and $11.95\left(\mathrm{CH}_{3}\right)$; $\mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 204(\mathrm{M}+1)$.
2-(But-3-enyl)-5-methoxy-1-methyl-1H-indole $6 \mathrm{c} . \mathrm{Mp} 65^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ 3097-3074 and $1641\left(\mathrm{HC=CH} \mathrm{H}_{2}\right) ; \delta_{\mathrm{H}} 7.09-6.76$ (m, 3 H, ArH), 6.15 (s, 1 H , ArH), 5.94-5.83 (m, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), 5.13$4.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right)$, $2.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $2.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 153.85$ (arom CO), 140.93 (arom C), 137.47 ($-\mathrm{C}=$), 132.54 and 128.00 (arom C), $115.19\left(=\mathrm{CH}_{2}\right), 110.29,109.22,101.86$ and 98.33 (arom CH), $55.73\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $32.51\left(\mathrm{CH}_{2}\right)$, $29.28\left(\mathrm{CH}_{3} \mathrm{~N}\right)$ and $26.24\left(\mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 78.39 ; \mathrm{H}, 7.93 ; \mathrm{N}, 6.66 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 78.10$; H, 7.96; N , 6.50\%).

5-M ethoxy-2-(4-methylpent-3-enyl)-1H -indole 6d. M p $48^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3390(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.10-6.75(\mathrm{~m}, 3 \mathrm{H}$, ArH), 6.15 (s, $1 \mathrm{H}, \mathrm{ArH}$), $5.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 2.70\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 153.77$ (arom CO), 140.61, 132.48 (arom C), $130.93(=C), 129.07$ (arom C), $123.34(-\mathrm{CH}=), 110.96$, 110.49, 101.87 and 99.10 (arom CH), $55.66\left(\mathrm{CH}_{3} \mathrm{O}\right), 28.22$ and $27.58\left(\mathrm{CH}_{2}\right)$ and 25.54 and $17.56\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 78.84 ; \mathrm{H}$, 8.13; $\mathrm{N}, 6.06 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 78.56 ; \mathrm{H}, 8.35 ; \mathrm{N}, 6.11 \%$); $\mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 230(\mathrm{M}+1)$.
5-M ethox y-1-methyl-2-[(E)-2-(2,6,6-trimethylcyclohex-2-enyl)ethenylf-1H -indole $6 \mathrm{e} . \mathrm{Mp} 113^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1615$ ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}} 7.11-6.78$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), $6.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.40-6.03(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CH}=\mathrm{CH}), 5.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.63(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NM}$ e), $2.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.55-1.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $0.89(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$); $\delta_{\mathrm{c}} 154.12$ (arom CO), 139.08 (arom C), 134.81, 121.40 and $120.04(=\mathrm{CH}), 111.27,109.61,101.64$ and 97.55 (arom CH), $55.68\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.06(\mathrm{CH}), 32.49$ (aliph C), $31.62\left(\mathrm{CH}_{2}\right), 29.77$ $\left(\mathrm{CH}_{3} \mathrm{~N}\right), 27.54$ and $26.96\left(\mathrm{CH}_{3}\right), 23.04\left(\mathrm{CH}_{2}\right)$ and $22.94\left(\mathrm{CH}_{3}\right)$ (Found: C, 81.63; H, 8.68; $\mathrm{N}, 4.65 . \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}$ requires $\mathrm{C}, 81.50$; H, 8.79; N , 4.52\%).
N, N-D iethyl-3-(5-methoxy-1H-indol-2-yl)propanamine $\quad \mathbf{6 f}$. $v_{\text {max }} / \mathrm{cm}^{-1} 3402(\mathrm{NH}) ; \delta_{\mathrm{H}} 10.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.23-6.73(\mathrm{~m}, 3 \mathrm{H}$, ArH), 6.12 (s, $1 \mathrm{H}, \mathrm{ArH}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.83(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.63-2.47\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and 1.08 (t, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); $\delta_{\mathrm{c}} 153.68$ (arom CO), 140.74, 131.15 and 129.24 (arom C), 110.96, 110.25, 101.76 and 98.60 (arom CH), $55.79\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.34\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.53\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 27.16$ and $25.93\left(\mathrm{CH}_{2}\right)$ and $11.17\left(2 \times \mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 74.15 ; \mathrm{H}, 9.23 ; \mathrm{N}$, 10.91. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.81 ; \mathrm{H}, 9.29 ; \mathrm{N}, 10.76 \%$); m/z $\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 261(\mathrm{M}+1)$.
N, N-D iethyl-2-(5-methox y-2-methyl-1H -indol-3-yl)ethan-
amine 7f. $v_{\max } / \mathrm{cm}^{-1} 3402$ (NH); $\delta_{\mathrm{H}} 8.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.25-6.70$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), 3.81 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 2.82-2.44 (m, $8 \mathrm{H}, 4 \times$ $\left.\mathrm{CH}_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $1.00\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 153.33$ (arom CO), 132.11, 130.30 and 128.71 (arom C), 110.80 and 109.76 (arom CH), 108.65 (arom C), 100.02 (arom CH), 55.61
$\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.68\left(\mathrm{CH}_{2} \mathrm{~N}\right), 46.35\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 21.20\left(\mathrm{CH}_{2}\right), 11.20$ $\left(2 \times \mathrm{CH}_{3}\right)$ and $11.06\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 261(\mathrm{M}+1)$.
N, N-D ibenzyl-3-(5-methoxy-1H-indol-2-yl)propanamine $6 \mathbf{g}$. $\mathrm{Mp} 86{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3410(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.39-7.27$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}$), 7.02-6.71 (m, $3 \mathrm{H}, \mathrm{ArH}$), 6.02 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.57\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.51\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 153.79$ (arom CO), 140.71 (arom C), $139.57(2 \times$ arom C), 130.75 and 129.02 (arom C), $129.01(4 \times$ arom CH), $128.25(4 \times$ arom CH), 126.95 ($2 \times \operatorname{arom} \mathrm{CH}$), 110.99, 110.37, 101.72 and 99.00 (arom CH), $58.54\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 55.75\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.68\left(\mathrm{CH}_{2} \mathrm{~N}\right)$ and 27.20 and $25.51\left(\mathrm{CH}_{2}\right)$ (Found: C, 81.35; $\mathrm{H}, 7.41 ; \mathrm{N}, 7.13 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.21 ; \mathrm{H}, 7.34 ; \mathrm{N}, 7.29 \%)$.
N, N-D ibenzyl-2-(5-methoxy-2-methyl-1H-indol-3-yl)ethanamine $7 \mathrm{~g} . v_{\max } / \mathrm{cm}^{-1} 3410(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.41-7.19$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}$), 7.08 (d, $1 \mathrm{H}, \mathrm{ArH}$), 6.71-6.64 (m, $2 \mathrm{H}, \mathrm{ArH}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.69\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 153.54$ (arom CO), $139.86(2 \times \operatorname{arom} \mathrm{C}), 131.77,130.10$ and 128.93 (arom C), $128.60(4 \times$ arom CH), $128.06(4 \times$ arom CH), $126.68(2 \times$ arom CH), 110.70 and 110.46 (arom CH), 109.97 (arom C), 99.97 (arom CH), $58.41\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$, $55.76\left(\mathrm{CH}_{3} \mathrm{O}\right), 53.47$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 22.06\left(\mathrm{CH}_{2}\right)$ and $11.36\left(\mathrm{CH}_{3}\right)$ (Found: C, 81.37; H , 7.58; $\mathrm{N}, 6.99 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.21 ; \mathrm{H}, 7.34 ; \mathrm{N}, 7.29 \%$).
N, N-D imethyl-4-(5-methoxy-1H-indol-2-yl)butanamine 6 h . M p $72{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3402(\mathrm{NH}) ; \delta_{\mathrm{H}} 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.15-6.73$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), $6.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}\right.$), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right.$), 2.74 (t, 2 $\mathrm{H}, \mathrm{CH}_{2}$), $2.31\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right.$) and $1.76-$ $1.53\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 153.69$ (arom CO), 140.65, 130.97 and 129.08 (arom C), 110.94, 110.36, 101.68 and 98.90 (arom $\mathrm{CH}), 59.06\left(\mathrm{CH}_{2}\right), 55.72\left(\mathrm{CH}_{3} \mathrm{O}\right), 45.20\left(2 \times \mathrm{CH}_{3} \mathrm{~N}\right)$ and 27.87 , 26.96 and $26.84\left(\mathrm{CH}_{2}\right)$ (Found: C, 73.09; H, 9.02; N, 11.44. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.13 ; \mathrm{H}, 9.00 ; \mathrm{N}, 11.37 \%$); m/z (CI, $\left.\mathrm{CH}_{4}\right) 247(\mathrm{M}+1)$.
N, N-D imethyl-3-(5-methoxy-2-methylindol-3-yl)propan-
amine $7 \mathrm{~h} . v_{\text {max }} / \mathrm{cm}^{-1} 3400(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.25-7.12$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{~N}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 153.37$ (arom CO), 140.54, 131.93, 130.31 and 110.79 (arom C), 110.74, 109.87 and 100.33 (arom $\mathrm{CH}), 59.13\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.78\left(\mathrm{CH}_{3} \mathrm{O}\right), 44.99\left(2 \times \mathrm{CH}_{3} \mathrm{~N}\right), 28.06$, $21.62\left(\mathrm{CH}_{2}\right)$ and $11.43\left(\mathrm{CH}_{3}\right)$.
N, N-D ibenzyl-4-(5-methoxy-1H-indol-2-yl)butanamine $6 \mathbf{i}$. $v_{\text {max }} / \mathrm{cm}^{-1} 3413(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.37-6.74(\mathrm{~m}, 13 \mathrm{H}$, ArH), 6.08 (s, $1 \mathrm{H}, \mathrm{ArH}$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right.$), $3.53(\mathrm{~s}, 4 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 2.57-2.42\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$ and 1.69-1.54 (m, 4H, $2 \times \mathrm{CH}_{2}$) ; $\delta_{\mathrm{c}} 153.85$ (arom CO), 140.54 (arom C), $139.82(2 \times$ arom C), 130.79 and 129.14 (arom C), $128.74(4 \times$ arom CH), $128.09(4 \times \operatorname{arom} C H), 126.72(2 \times \operatorname{arom} \mathrm{CH}), 110.85,110.50$, 101.82 and $99.12(\operatorname{arom~CH}), 58.29\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 55.75\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $52.59\left(\mathrm{CH}_{2} \mathrm{~N}\right)$ and 27.66, 26.49 and $26.32\left(\mathrm{CH}_{2}\right)$ (Found: C , 81.43; H, 7.58; $\mathrm{N}, 6.80 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.37 ; \mathrm{H}, 7.59$; N, 7.03\%).
N,N-D ibenzyl-3-(5-methoxy-2-methyl-1H -indol-3-yl)propanamine 7i. $v_{\text {max }} / \mathrm{cm}^{-1} 3413(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.35-6.75$ ($\mathrm{m}, 13 \mathrm{H}, \mathrm{ArH}$), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.57\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.63-2.39 (m, 4 H, $2 \times \mathrm{CH}_{2}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $1.83-1.73$ ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{c}} 153.45$ (arom CO), 140.03 (arom C), $139.63(2 \times$ arom C), 131.39 and 130.21 (arom C), 128.20 ($4 \times \operatorname{arom~CH}$), $126.56(4 \times$ arom CH), $126.38(2 \times \operatorname{arom~CH})$, 111.54 (arom C), 110.67, 110.08 and 100.17 (arom CH), 57.99 $\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 55.48\left(\mathrm{CH}_{3} \mathrm{O}\right), 52.53\left(\mathrm{CH}_{2} \mathrm{~N}\right), 26.52$ and 21.72 $\left(\mathrm{CH}_{2}\right)$ and $11.35\left(\mathrm{CH}_{3}\right)$ (Found: C, 81.74; H, 7.77; N, 7.00. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.37 ; \mathrm{H}, 7.59 ; \mathrm{N}, 7.03 \%$).

2-(3-E thoxypropyl)-5-methoxy-1H -indole $6 \mathrm{j} . v_{\text {max }} / \mathrm{cm}^{-1} 3405$ (NH); $\delta_{\mathrm{H}} 8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.09-6.72(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.13(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{ArH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.50-3.42\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, $2.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}$ 153.54 (arom CO), 140.04, 130.88 and 128.92 (arom C), 110.85, $110.25,101.63$ and 98.87 (arom CH), $69.45\left(\mathrm{CH}_{2}\right), 65.84$
$\left(\mathrm{CH}_{2} \mathrm{O}\right), 55.40\left(\mathrm{CH}_{3} \mathrm{O}\right), 28.83$ and $24.72\left(\mathrm{CH}_{2}\right)$ and $14.88\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 71.68 ; \mathrm{H}, 8.22 ; \mathrm{N}, 6.29 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C , $72.07 ; \mathrm{H}, 8.21 ; \mathrm{N}, 6.0 \%)$; m/z (CI, CH 4) $234(\mathrm{M}+1)$.

3-(2-E thoxyethyl)-5-methoxy-2-methyl-1H -indole 7j. $\quad v_{\max } /$ $\mathrm{cm}^{-1} 3405(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.10-6.49(\mathrm{~m}, 3 \mathrm{H}$, arom H), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.51-3.40\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.94(\mathrm{t}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ and $1.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 153.35$ (arom CO), 132.60, 130.14 and 128.82 (arom C), 110.73 and 109.94 (arom CH), 107.32 (arom C), 100.04 (arom CH), 55.50 $\left(\mathrm{CH}_{3} \mathrm{O}\right)$ and 14.94 and $11.04\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 234(\mathrm{M}+1)$.

2-Butyl-5-methyl-1H-indole 6k. Mp $78{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3393$ (NH) ; $\delta_{\mathrm{H}} 7.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.30-6.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.14(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{ArH}), 2.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}$ 140.12, 133.99, 128.99 and 128.50 (arom C), 122.21, 119.37, 109.96 and 98.69 (arom CH), 31.16, 27.79 and $22.32\left(\mathrm{CH}_{2}\right)$ and 21.37 and $13.80\left(\mathrm{CH}_{3}\right)$ (Found: C, 83.33; H, 9.20; N, 7.59. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}$ requires C, 83.37; H, 9.15; N, 7.48\%); m/z (CI, CH ${ }_{4}$) 188 $(M+1)$.

2,5-D imethyl-3-propyl-1H -indole 7k. $v_{\text {max }} / \mathrm{cm}^{-1} 3404\left(\mathrm{NH}\right.$); δ_{H} 7.57 (s, $1 \mathrm{H}, \mathrm{NH}$), 7.27-6.90 (m, $3 \mathrm{H}, \mathrm{ArH}$), $2.63\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.93\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 133.46,130.86,129.01$ and 127.90 (arom C), 122.07 and 117.88 (arom CH), 111.61 (arom C), 109.73 (arom CH), 26.12 and $23.81\left(\mathrm{CH}_{2}\right)$ and 21.50, 14.05 and 11.57 $\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 188(\mathrm{M} \mathrm{+1})$.

2-B utyl-5-fluoro-1H -indole $61 . \mathrm{Mp} 50^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3418$ (NH); $\delta_{\mathrm{H}} 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.12-6.82(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.19(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{ArH}), 2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}) and $0.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}$ 158.98-156.67 (arom CF), 141.97, 132.20 and 129.07 (arom C), 110.61-110.70, 108.84108.80, 104.65-104.41 and 99.59-99.54 (arom CH), 31.13, 27.93 and $22.33\left(\mathrm{CH}_{2}\right)$ and $13.80\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 75.76 ; \mathrm{H}$, 7.57; N, 7.58. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}$ N requires $\mathrm{C}, 75.36 ; \mathrm{H}, 7.38 ; \mathrm{N}, 7.32 \%$; $\mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 192(\mathrm{M}+1)$.
5-Fluoro-2-methyl-3-propyl-1H-indole 71 was obtained in traces, $\mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 192(\mathrm{M}+1)$.
2-Butyl-7-methyl-1H-indole $6 \mathrm{~m} . \mathrm{Mp} 61{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3409$ (NH); $\delta_{\mathrm{H}} 7.76$ (s, $1 \mathrm{H}, \mathrm{NH}$), 7.38-6.90 (m, 3 H, ArH), 6.24 (s, 1 $\mathrm{H}, \mathrm{ArH}), 2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 139.60$, 135.25 and 128.29 (arom C), 121.47 and 119.64 (arom CH), 119.34 (arom C), 117.39 and 99.82 (arom CH), 31.32, 27.94 and $22.36\left(\mathrm{CH}_{2}\right)$ and 16.62 and $13.82\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 83.46 ; \mathrm{H}$, 8.96; $\mathrm{N}, 7.27 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}$ requires $\mathrm{C}, 83.37 ; \mathrm{H}, 9.15 ; \mathrm{N}, 7.48 \%$); $\mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 188(\mathrm{M}+1)$.

2,7-D imethyl-3-propyl-1H -indole 7 m was obtained in very low yield. $v_{\text {max }} / \mathrm{cm}^{-1} 3415(\mathrm{NH}) ; \delta_{\mathrm{H}} 7.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.36-6.89$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), $2.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.38$ (s, 3 $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 134.60$, 130.37 and 128.29 (arom C), 121.33 (arom CH), 119.15 (arom C), 119.03 and 115.87 (arom CH), 112.57 (arom C), 26.21 and $23.82\left(\mathrm{CH}_{2}\right)$ and $16.46,14.02$ and $11.54\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{CH}_{4}\right)$ $188(M+1)$.

2-D imethoxymethyl-5-methoxy-1H-indole $6 \mathrm{n} . \mathrm{Mpp} 87^{\circ} \mathrm{C} ; v_{\text {max }} /$ $\mathrm{cm}^{-1} 3338(\mathrm{NH}) ; \delta_{\mathrm{H}} 8.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.18-6.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $6.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, $5.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$ and 3.34 (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}$); $\delta_{\mathrm{c}} 153.97$ (arom CO), 135.49, 130.82 and 128.27 (arom C), 112.40, 111.72 and 102.23 (arom CH), $100.85(\mathrm{CH}), 98.64(\operatorname{arom~CH})$ and 55.58 and $52.47\left(\mathrm{CH}_{3} \mathrm{O}\right)$ (Found: C, 65.32; $\mathrm{H}, 6.81 ; \mathrm{N}, 6.14 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C , 65.13; H, 6.83; N, 6.33\%).

Hydrolysis of compound $\mathbf{6 n}$. Compound $\mathbf{6 n}(\mathbf{1 0 0} \mathrm{mmol})$ was stirred at room temperature in a mixture of 150 ml of acetone and 50 ml of $2.5 \% \mathrm{HCl}$ for 1 h . The mixture was then extracted with diethyl ether, the extract was washed twice with water and dried over $\mathrm{M} \mathrm{gSO}_{4}$, and the solvents were removed under reduced pressure. From the residue, washed with hexane, was obtained 5 -methoxy-1H-indole-2-carbaldehyde ${ }^{14}$ in quantitative yield.

2-D imethoxymethyl-5-methyl-1H-indole $60 . \mathrm{Mp} 86^{\circ} \mathrm{C}$; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3399(\mathrm{NH}) ; \delta_{\mathrm{H}} 8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.37-6.96(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, 6.45 (s, $1 \mathrm{H}, \mathrm{ArH}$), $5.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}\right)$ and $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}} 134.83,134.01,128.77$ and 128.19 (arom C), 123.69, 120.33, 110.67 and 100.73 (arom CH), 98.75 $(\mathrm{CH}), 52.48\left(2 \times \mathrm{CH}_{3} \mathrm{O}\right)$ and $21.25\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 70.38 ; \mathrm{H}$, 7.26; $\mathrm{N}, 6.90 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.21 ; \mathrm{H}, 7.36 ; \mathrm{N}, 6.82 \%$); $\mathrm{m} / \mathrm{z}\left(\mathrm{Cl}, \mathrm{CH}_{4}\right) 188(\mathrm{M}+1)$.
2-D imethoxymethyl-5-fluoro-1H-indole 6 p. $\mathrm{Mp} 82^{\circ} \mathrm{C}$; $v_{\text {max }} /$ cm^{-1} 3415-3319(NH); $\delta_{\mathrm{H}} 8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.25-6.86(\mathrm{~m}, 3 \mathrm{H}$, ArH), 6.49 (s, $1 \mathrm{H}, \mathrm{ArH}$), $5.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$ and $3.36(\mathrm{~s}, 6$ $\mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}$); δ_{c} 159.64-155.91 (arom CF), 136.68, 132.19 and 128.31-128.16 (arom C), 111.70-111.55, 110.67-110.25, 105.55-105.18 and 101.24 (arom CH), 98.58 (CH) and 52.69 $\left(2 \times \mathrm{CH}_{3} \mathrm{O}\right)$ (Found: C, 63.34; H, 5.81; N, 6.52; F, 9.02. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FNO}_{2}$ requires C, 63.14; $\mathrm{H}, 5.78 ; \mathrm{N}, 6.69 ; \mathrm{F}, 9.08 \%$).

5-C hloro-2-dimethoxymethyl-1H-indole $6 q . \mathrm{Mp} 84{ }^{\circ} \mathrm{C}$; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3431-3311(\mathrm{NH}) ; \delta_{\mathrm{H}} 9.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.13-7.04 (m, 2 H, ArH), 6.44 (s, 1 H, ArH), 5.53 (s, 1 H, CH) and $3.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}\right)$; $\delta_{\mathrm{c}} 136.23,133.98,128.74$ and 124.87 (arom C), $122.04,119.79,111.95$ and 100.65 (arom CH), $98.42(\mathrm{CH})$ and $52.48\left(2 \times \mathrm{CH}_{3} \mathrm{O}\right)$ (Found: $\mathrm{C}, 58.49 ; \mathrm{H}, 5.31 ; \mathrm{N}$, 6.44; $\mathrm{Cl}, 15.61 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{CIN} \mathrm{O}_{2}$ requires $\mathrm{C}, 58.54 ; \mathrm{H}, 5.36 ; \mathrm{N}$, 6.20 ; CI, 15.71\%).

2-D imethoxymethyl- 1 H -indole 6 r . $\mathrm{Mp} 100^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3270$ (NH); $\delta_{\mathrm{H}} 8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.60-7.04$ (m, $4 \mathrm{H}, \mathrm{ArH}$), 6.53 ($\mathrm{s}, 1$ H, ArH), $5.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$ and $3.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{O}\right)$; δ_{c} 135.70, 134.73 and 127.86 (arom C), 122.02, 120.68, 119.61, 111.02 and 101.19 (arom CH), $98.73(\mathrm{CH})$ and 52.54 $\left(2 \times \mathrm{CH}_{3} \mathrm{O}\right)$ (Found: $\mathrm{C}, 68.75 ; \mathrm{H}, 6.77 ; \mathrm{N}, 7.14 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.08$; $\mathrm{H}, 6.85$; $\mathrm{N}, 7.32 \%$).
8-M ethoxy-2,3,4,5-tetrahydrothiopyrano[3,2-b]indole 8a. Obtained according to the literature method. ${ }^{4}$
8-M ethoxy-5-methyl-2,3,4,5-tetrahydrothiopyrano[3,2-b]-
indole 8b. M p $136^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 7.25-6.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $3.84(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.84(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}) and $2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 153.60$ (arom CO), 131.52, 130.97 and 125.78 (arom C), 111.23, 109.27 and 99.64 (arom $\mathrm{CH}), 99.28$ (arom CS), $55.77\left(\mathrm{CH}_{3} \mathrm{O}\right), 29.02\left(\mathrm{CH}_{3} \mathrm{~N}\right), 26.64$ $\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and 24.49 and $21.71\left(\mathrm{CH}_{2}\right)$ (Found: C, 67.01; H, 6.51, $\mathrm{N}, 5.90 ; \mathrm{S}, 13.74 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}$ OS requires $\mathrm{C}, 66.92 ; \mathrm{H}, 6.48 ; \mathrm{N}$, $6.00 ;$ S, 13.74\%).
5-B enzyl-8-methoxy-2,3,4,5-tetrahydrothiopyrano[3,2-b]-
indole 8c. $\mathrm{Mp} 147^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 7.28-6.77$ (m, $8 \mathrm{H}, \mathrm{ArH}$), $5.22(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.74(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}) and $2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 153.90$ (arom CO), 137.75, 131.88 and 130.82 (arom C), $128.68(2 \times \operatorname{arom} C H), 127.22$ (arom CH), 126.17 (arom C), 125.91 ($2 \times$ arom CH), 111.71 and 109.83 (arom CH), 100.36 (arom CS), 99.84 (arom CH), $55.81\left(\mathrm{CH}_{3} \mathrm{O}\right), 46.25\left(\mathrm{CH}_{2} \mathrm{~N}\right), 26.73\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and 24.46 and $21.80\left(\mathrm{CH}_{2}\right)$ (Found: C, 74.02; H, 6.28; N, 4.27; S, 10.34. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}$ OS requires $\left.\mathrm{C}, 73.75 ; \mathrm{H}, 6.19 ; \mathrm{N}, 4.53 ; \mathrm{S}, 10.36 \%\right)$.
E thyl 2-(8-methox y-2,3,4,5-tetrahydrothiopyrano[3,2-b]indol5 -yl)acetate 8d. Obtained according to the literature method. ${ }^{8}$
6-M ethoxy-2,3,4,5-tetrahydrothiopyrano[3,2-b]indole 8e. M p $144^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH}) ; \delta_{\mathrm{H}} 8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.04-6.64$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}$), $3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.06-2.90(\mathrm{~m}, 4 \mathrm{H}$, $2 \times \mathrm{CH}_{2}$) and $2.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}} 145.46$ (arom C), 128.39, 127.57 and 125.38 (arom C), 119.75, 110.81 and 102.10 (arom $\mathrm{CH}), 101.60(\operatorname{arom} \mathrm{CS}), 55.28\left(\mathrm{CH}_{3} \mathrm{O}\right), 26.86\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and 24.16 and $22.76\left(\mathrm{CH}_{2}\right)$ (Found: $\mathrm{C}, 65.79 ; \mathrm{H}, 6.02 ; \mathrm{N}, 6.23 ; \mathrm{S}, 14.21$. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOS}$ requires $\mathrm{C}, 65.72 ; \mathrm{H}, 5.98 ; \mathrm{N}, 6.39 ; \mathrm{S}, 14.62 \%$).
2-(3-Sulfanylpropyl)-1H-indol-5-ol 9a. $v_{\text {max }} / \mathrm{cm}^{-1} 3396$ (OH , $\mathrm{NH})$ and $2556(\mathrm{SH})$; $\delta_{\mathrm{H}} 7.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.03-6.63(\mathrm{~m}, 3 \mathrm{H}$, ArH), 6.06 (s, 1 H, ArH), $5.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{SH}) ; \delta_{\mathrm{c}}$ 149.16 (arom CO), 139.63, 131.07 and 129.34 (arom C), 110.98, $110.52,104.46$ and 99.24 (arom CH), 32.89 and $26.53\left(\mathrm{CH}_{2}\right)$ and $23.85\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ (Found: C, 64.12; H, 6.49; N, 6.49; S, 15.39. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOS}$ requires $\left.\mathrm{C}, 63.73 ; \mathrm{H}, 6.31 ; \mathrm{N}, 6.75 ; \mathrm{S}, 15.46 \%\right)$.

1-M ethyl-2-(3-sulfanylpropyl)-1H -indol-5-ol 9 b. $\quad \mathrm{Mp} 73{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3370(\mathrm{OH})$ and $2553(\mathrm{SH})$; $\delta_{\mathrm{H}} 7.04-6.67(\mathrm{~m}, 3 \mathrm{H}$, ArH), 6.06 (s, $1 \mathrm{H}, \mathrm{ArH}$), $5.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.51(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{~N}$), $2.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}) and 1.37 (t, $1 \mathrm{H}, \mathrm{SH}$); $\delta_{\mathrm{c}} 149.13$ (arom CO), 140.59, 132.71 and 128.17 (arom C), 110.14, 109.21, 104.44 and 98.21 (arom CH), $32.33\left(\mathrm{CH}_{2}\right), 29.35\left(\mathrm{CH}_{3} \mathrm{~N}\right), 25.11\left(\mathrm{CH}_{2}\right)$ and 23.91 ($\mathrm{CH}_{2} \mathrm{~S}$) (Found: C, 65.04; H , 6.90; N, 6.03; S, 14.30. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N} \mathrm{OS}$ requires $\mathrm{C}, 65.12 ; \mathrm{H}, 6.83 ; \mathrm{N}, 6.32 ; \mathrm{S}, 14.48 \%)$.

1-Benzyl-2-(3-sulfanylpropyl)-1H -indol-5-ol 9c. M p 90-95 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3389(\mathrm{OH})$ and $2559(\mathrm{SH}) ; \delta_{\mathrm{H}} 7.21-6.01(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{ArH}), 6.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $2.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SH}) ; \delta_{\mathrm{c}} 149.45$ (arom CO), 140.59, 137.78, 132.50 and 128.52 (arom C), $128.66(2 \times$ arom CH), 127.17 (arom CH), $125.72(2 \times \operatorname{arom} C H), 110.46,109.84,104.53$ and 99.04 (arom CH), $46.37\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.34$ and $25.08\left(\mathrm{CH}_{2}\right)$ and 23.93 ($\mathrm{CH}_{2} \mathrm{~S}$) (Found: C, 72.63 ; H, 6.39; N, 4.63; S, 11.15. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NOS}$ requires $\mathrm{C}, 72.69 ; \mathrm{H}, 6.44 ; \mathrm{N}, 4.71 ; \mathrm{S}, 10.78 \%)$.
E thyl 2-[5-hydroxy-2-(3-sulfanylpropyl)-1H -indol-1-yl]acetate 9d. $v_{\text {max }} / \mathrm{cm}^{-1} 3412(\mathrm{OH})$ and $1738\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}} 6.97-6.66(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{ArH}), 6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 5.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 4.71(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{SH}\right) ; \delta_{\mathrm{c}} 169.52$ ($\mathrm{C}=0$) , 150.45 (arom CO), 140.78, 132.04 and 129.20 (arom C), 111.18, 109.43, 105.33 and 100.13 (arom CH), $62.20\left(\mathrm{OCH}_{2}\right)$, $45.32\left(\mathrm{NCH}_{2}\right), 32.61$ and $25.31\left(\mathrm{CH}_{2}\right), 24.40\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ and 14.57 $\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{C}, 61.52 ; \mathrm{H}, 6.47 ; \mathrm{N}, 4.72 ; \mathrm{S}, 11.28 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 61.41 ; \mathrm{H}, 6.52 ; \mathrm{N}, 4.77$; S, 10.93\%).
2-(3-Sulfanylpropyl)-1H -indol-7-ol 9e. $v_{\text {max }} / \mathrm{cm}^{-1} 3396$ (NH , OH) and $2553(\mathrm{SH}) ; \delta_{\mathrm{H}} 8.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.14-6.46(\mathrm{~m}, 3 \mathrm{H}$, ArH), $6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 2.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $1.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{SH}) ; \delta_{c} 140.58$ (arom CO), $138.62,130.93$ and 125.46 (arom C), 119.95, 112.92, 106.11 and 100.16 (arom CH), 32.89 and $26.35\left(\mathrm{CH}_{2}\right)$ and $23.77\left(\mathrm{CH}_{2} \mathrm{~S}\right)$ (Found: C, 64.08; H, 6.38; N, 6.50; S, 15.15. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NOS}$ requires C, 63.73; H , 6.31; N , 6.75; S, 15.46\%).

Acknowledgements

LCO1 thanks ADIR for financial support. We thank the referees for their interesting suggestions and the editor for useful corrections.

R eferences

1 See, for example, H. H emetsberger, D. K nittel and H. Weidmann, M onatsh. Chem., 1970, 101, 161; C. J. M oody, J. Chem. Soc., Perkin Trans. 1, 1984, 1333; A. R . K atritzky, J. Li and C. V. Stevens, J. Org. Chem., 1995, 60, 3401; S. M ahboobi, S. Kuhr and M. Koller, Tetrahedron, 1996, 52, 6373; B. Joseph, B. M alapel and J. Y. M érour, Synth. Commun., 1996, 26, 3289; V. J. M ajo and P. T. Perumal, J. Org. Chem., 1996, 61, 6523; R. C. Larock, T. R. Hightower, L. A. H asvold and K. P. Petersen, J. Org. Chem., 1996, 61, 3584; S. Caddick, K. A boutayab, K. Jenkins and R. I. West, J. Chem. Soc., Perkin Trans. 1, 1996, 675; R eviews: U. S. Gill, R . M . M oriarty, Y. Y. K u and I. R. Butler, J. Organomet. Chem., 1991, 417, 313; C. J. M oody, Synlett, 1994, 681; C. W. Gribble, Contemp. Org. Synth., 1994, 1, 145.
2 L. Lalloz and P. Caubère, J. Chem. Soc., Chem. Commun., 1975, 745.

3 P. Caubère, R ev. H eteroatom C hem., 1991, 4, 78; Chem. R ev., 1993, 93, 2317 and references cited therein.
4 C. Caubère, P. Caubère, S. Ianelli, M. Nardelli and B. JamartG régoire, Tetrahedron, 1994, 50, 11903.
5 M. Bouisset, M. Chignac, C. Grain and C. Pigerol, Sanofi Fr. Pat., 7930 039, 1979; Eur. Pat. 80870053.8, 1980 (C hem. A bstr., 1981, 95, 168579f).
6 Ph. Gros, Y. Fort, G. Queguiner and P. Caubère, Tetrahedron L ett., 1995, 36, 4791; Ph. G ros, Ph. H ansen and P. C aubère, Tetrahedron, 1996, 52, 15147.
7 M. M arsch, K . H arms, L. Lochmann and G. Boche, A ngew. C hem., Int. Ed. Engl., 1990, 29, 308; P. H all, J. Gilchrist, A. H arrison,
D. Fuller and D. Collum, J. Am. Chem. Soc., 1991, 113, 9575 R. M ulvey, Chem. Soc. Rev., 1991, 20, 167; D. Collum, Acc. Chem. Res., 1992, 25, 448 and references cited therein; G. Delong, D. Pannell, M. Clarke and R. Thomas, J. Am. Chem. Soc., 1993, 115, 7013; F. Romersberg and D. Collum, J. A m. Chem. Soc., 1994 116, 9187; J. Saà, G. M artorell and A. F rontera, J. Org. C hem., 1996, 61, 5194; M. Davidson, R. Davies, P. Raithby and R. Snaith, J. Chem. Soc., Chem. Commun., 1996, 1695; B. Lucht and D. Collum, J. A m. C hem. Soc., 1996, 118, 2217.

8 C. Caubère, P. Caubère, P. Renard, J. G. Bizot-E spiart, S. Ianelli, M . N ardelli and B. Jamart-G régoire, Tetrahedron, 1994, 50, 13433.
9 M . N ode, K . N ishide, T. K awarata, K. Ohta, K. Watanabe, K . F uji and E. F ujita, C hem. P harm. Bull., 1983, 31, 4306.
10 B. Pugin and L. M. Verranzi, J. A m. Chem. Soc., 1983, 105, 6877.

11 F. D uus and S. O. Lawesson, Tetrahedron, 1971, 27, 387.
12 R. W. M oore, F. Cassidy and G. Wootton (Beecham Group Ltd), Ger. Offen., 2722118 (CI. CO7D 207/40), 01 D ec. 1977; Brit. Appl., 76/21 304, 22 M ay 1976, 59 pp (Chem. A bstr., 1978, 88, 104769r).
13 B. R. Baker, V. Q. M erle, R. E. Schaub and J. H. Williams, J. Org. Chem., 1952, 17, 58.
14 M . F etizon, F. Gomez-Parra and J. M . Louis, J. H eterocycl. Chem., 1976, 13, 525.

Paper 7/02548C
Received 14th A pril 1997
A ccepted 6th J une 1997

